On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces

نویسنده

  • Thorsten W. Becker
چکیده

S U M M A R Y Global circulation models are analysed using a temperature and strain-rate dependent rheology in order to refine previous estimates of the nature of mantle flow and plate driving forces. Based on temperature inferred from a tectonic model and seismic tomography, the suboceanic viscosity is lower than underneath continents by ∼ one order of magnitude. If net-rotations of the lithosphere with respect to a stable lower mantle reference frame are accounted for, the patterns of flow in the upper mantle are similar between models with layered and those with laterally varying viscosity. The excited net rotations scale with the viscosity contrast of continental roots to the ambient mantle; this contrast is dynamically limited by the power-law rheology. Surface net rotations match the orientation of hotspot reference-frame Euler poles well, and amplitudes are of the right order of magnitude. I compare prescribed surface velocity models with free-slip computations with imposed weak zones at the plate boundaries; velocity fields are generally consistent. Models based on laboratory creep laws for dry olivine are shown to be compatible with average radial viscosity profiles, plate velocities in terms of orientation and amplitudes, plateness of surface velocities, toroidal:poloidal partitioning, and fabric anisotropy formation under dislocation creep in the upper mantle. Including temperature-dependent variations increases the relative speeds of oceanic versus continental lithosphere, makes surface velocities more plate-like, and improves the general fit to observed plate motions. These findings imply that plate-driving force studies which are based on simpler mantle rheologies may need to be revisited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy

[1] Although an average westward rotation of the Earth’s lithosphere is indicated by global analyses of surface features tied to the deep mantle (e.g., hot spot tracks), the rate of lithospheric drift is uncertain despite its importance to global geodynamics. We use a global viscous flow model to predict asthenospheric anisotropy computed from linear combinations of mantle flow fields driven by...

متن کامل

Influence of continental roots and asthenosphere on plate-mantle coupling

[1] The shear tractions that mantle flow exerts on the base of Earth’s lithosphere contribute to plate-driving forces and lithospheric stresses. We investigate the sensitivity of these tractions to sub-lithospheric viscosity variations by comparing shear tractions computed from a mantle flow model featuring laterally-varying lithosphere and asthenosphere viscosity with those from a model with l...

متن کامل

Multi-scale dynamics and rheology of mantle flow with plates

[1] Fundamental issues in our understanding of plate and mantle dynamics remain unresolved, including the rheology and state of stress of plates and slabs; the coupling between plates, slabs and mantle; and the flow around slabs. To address these questions, models of global mantle flow with plates are computed using adaptive finite elements, and compared to a variety of observational constraint...

متن کامل

Plate bending at subduction zones: Consequences for the direction of plate motions

Bending of lithospheric plates at subduction zones is thought to be an important source of dissipation for convection in the Earth's mantle. However, the influence of bending on plate motion is uncertain. Here we use a variational description of mantle convection to show that bending strongly affects the direction of plate motion. Subduction of slabs and subsidence of oceanic lithosphere with a...

متن کامل

EFFECT OF TIME-DEPENDENT TRANSPIRATION ON AXISYMMETRIC STAGNATION-POINT FLOW AND HEATTRANSFER OF A VISCOUS FLUID ON A MOVING CIRCULAR CYLINDER

Effect of time dependent normal transpiration on the problem of unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder moving simultaneously with time-depended angular and axial velocities and with time-dependent wall temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006